STATEMENT OF BASIS (AI No. 32739)

for draft Louisiana Pollutant Discharge Elimination System permit No. LA0002780 to discharge to waters of the State of Louisiana,

THE APPLICANT IS: PQ Corporation

Pineville Plant 4000 Pardue Road Ball, LA 71405

ISSUING OFFICE:

Louisiana Department of Environmental Quality (LDEQ)

Office of Environmental Services

Post Office Box 4313

Baton Rouge, Louisiana 70821-4313

PREPARED BY:

Jenniffer Sheppard

Water and Waste Permits Division

Phone: 225-219-3135

e-mail: jenniffer.sheppard@la.gov

DATE PREPARED:

November 1, 2005

1. PERMIT STATUS

A. Reason For Permit Action:

Issuance of an expired Louisiana Pollutant Discharge Elimination System (LPDES) permit for a 5-year term.

B. NPDES permit - NPDES permit effective date: October 24, 1993 NPDES permit expiration date: October 23, 1998

EPA has not retained enforcement authority.

C. LPDES permit - LPDES permit effective date: N/A LPDES permit expiration date: N/A

D. Date Application Received: August 11, 2004. Addendum received on February 3, 2006.

2. FACILITY INFORMATION

A. FACILITY TYPE/ACTIVITY - sodium silicate manufacturing facility

According to the permit application, PQ Corporation is an inorganic chemical manufacturer that produces sodium silicate from high purity silica sand and soda ash. The sand and soda ash are fed into the furnace which operates at approximately 2450 °F and melted to produce sodium silicate. The discharges include process wastewater, process area stormwater, and wash out water from Outfall 002.

Former LPDES permit was discontinued at the request of PQ Corporation (former Power Silicates), due to the rerouting of their wastewater to the City of Pineville.

Currently, the facility discharges are routed to the City of Pineville's Municipal Sewage Treatment Plant and covered under LPDES permit, LA0033464. This proposed permit will cover discharges from PQ Corporation in the event that the City of Pineville can not accept the discharge due to internal operational or capacity issues.

Stormwater discharges from PQ Corporation are covered under the Multi-Sector General Permit, LAR05M520, effective on June 19, 2001.

B. TECHNOLOGY BASIS

Technology Basis - (40 CFR Chapter 1, Subchapter N/Parts 401-402, and 404-471 have been adopted by reference at LAC 33:IX.4903)

<u>Guideline</u>

Reference

Inorganic Chemicals

Sodium Silicate

40 CFR 415 (Subpart S [Reserved])

According to the Inorganic Chemical Manufacturing Development Document (Sodium Silicate Manufacturing Category), it was determined that no further effort be given to developing BPT, BAT, NSPS, and Pretreatment regulations. The basis for this determination is that the small quantities of toxic pollutants found during screening are below accepted levels of treatability (See Appendix C).

Other sources of technology based limits: LDEQ Light Commercial General Permit, LAG480000 Best Professional Judgement

C. FEE RATE

1. Fee Rating Facility Type: Minor

2. Complexity Type: II
3. Wastewater Type: II

4. SIC code: 2819

D. LOCATION - 4000 Pardue Road in Ball, Rapides Parish Latitude 31°22'51", Longitude 92°24'92"

3. OUTFALL INFORMATION

Outfall 002

Discharge Type: process wastewater including cooling water (chainwater), filter backwash, and

miscellaneous de minimis process related wastewaters; railcar washout water; and

low contamination potential stormwater runoff

Treatment:

sulfuric acid (to lower pH)

Location:

at the point of discharge prior to commingling with other waters and/or discharging

into Flagon Bayou (Latitude 31°22'29", Longitude 92°24'50")

Flow:

0.0144 MGD

Discharge Route: Flagon Bayou via and unnamed ditch, thence to Catahoula Lake

Effluent Data: The effluent data are contained in Appendix B

4. RECEIVING WATERS

STREAM - Flagon Bayou via an unnamed ditch, thence to Catahoula Lake

BASIN AND SEGMENT - Ouachita River Basin, Segment 081603

1. TSS (15%), mg/L: 7.3

2. Average Hardness, mg/L CaCO₃: 19.5

3. Critical Flow, cfs: 0.14. Mixing Zone Fraction: 1

5. Harmonic Mean Flow, cfs:1

6. River Basin: Ouachita River, Segment No. 081603

7. Designated Uses:

The designated uses are primary contact recreation, secondary contact recreation, and fish and wildlife propagation.

Information based on the following: Water Quality Management Plan, Volume 5A, 1994; LAC 33:IX Chapter 11;/Recommendation(s) from the Engineering Section. Hardness and 15% TSS data come from monitoring station # 2579 / in Flagon Bayou at the bridge on Louisiana Highway 623 at Paradise listed in <u>Hardness and TSS Data for All LDEQ Ambient Stations for the Period of Record as of March 1998</u>, LeBlanc and are included in a memo from Brian Baker to Jenniffer Sheppard dated November 7, 2005.

5. PROPOSED EFFLUENT LIMITS RATIONALE

The following section sets forth the principal facts and the significant factual, legal, methodological, and policy questions considered in preparing the draft permit. Also set forth are any calculations or other explanations of the derivation of specific effluent limitations and conditions, including a citation to the applicable effluent limitation guideline or performance standard provisions as required under LAC 33:IX.2707/40 CFR Part 122.44 and reasons why they are applicable or an explanation of how the alternate effluent limitations were developed.

A. <u>TECHNOLOGY-BASED VERSUS WATER QUALITY STANDARDS-BASED EFFLUENT LIMITATIONS</u> AND CONDITIONS

Following regulations promulgated at LAC 33:IX.2707.L.2.b/40 CFR Part 122.44(I)(2)(ii), the draft permit limits are based on either technology-based effluent limits pursuant to LAC 33:IX.2707.A/40 CFR Part 122.44(a) or on State water quality standards and requirements pursuant to LAC 33:IX.2707.D/40 CFR Part 122.44(d), whichever are more stringent.

B. TECHNOLOGY-BASED EFFLUENT LIMITATIONS AND CONDITIONS

Regulations promulgated at LAC 33:IX.2707.A/40 CFR Part 122.44(a) require technology-based effluent limitations to be placed in LPDES permits based on effluent limitations guidelines where applicable, on BPJ (best professional judgement) in the absence of guidelines, or on a combination

of the two. The following is a rationale for types of wastewaters. See outfall information descriptions for associated outfall(s) in Section 3.

Technology Basis - (40 CFR Chapter 1, Subchapter N/Parts 401-402, and 404-471 have been adopted by reference at LAC 33:IX.4903)

<u>Guideline</u>

Reference

Inorganic Chemicals

Sodium Silicate

40 CFR 415 (Subpart S [Reserved])

According to the Inorganic Chemical Manufacturing Development Document (Sodium Silicate Manufacturing Category), it was determined that no further effort be given to developing BPT, BAT, NSPS, and Pretreatment regulations. The basis for this determination is that the small quantities of toxic pollutants found during screening are below accepted levels of treatability (See Appendix C).

Outfall 002 -the discharge of process wastewater including cooling water (chainwater), filter backwash, and miscellaneous de minimis process related wastewaters; railcar washout water; and low contamination potential stormwater runoff (estimated Outfall 002 flow is 0.0144 MGD).

PARAMETER			MEASUREMENT FREQUENCY	SAMPLE TYPE	REFERENCE
	MONTHLY AVERAGE	DAILY MAXIMUM			
Flow (MGD)	Report	Report	1/month	Estimate	LAC 33:IX.2707.I.1.b
TOC		50 mg/l	1/month	Grab	BPJ; *; LCGP
Oil & Grease		15 mg/l	1/month	Grab	BPJ; *; LCGP
Temperature		Report °F	1/month	Grab	BPJ;*; LCGP
Total Residual Chlorine		0.2 mg/L	1/month	Grab	BPJ:*; LCGP
pH Min/Max values (su)	6.0	9.0	Continuous	Recorder	LAC 33:IX.1113.C.1

Existing permits for similar outfalls

BPJ Best Professional Judgement

su Standard Units

LCGP Light Commercial General Permit, LAG480000

Treatment: Addition of sulfuric acid for pH control.

Monitoring Frequency: Flow shall be monitored once per month by estimate. TOC, Oil and Grease, Temperature, and Total Residual Chlorine shall be monitored once per month by grab sample. Monitoring frequencies are established based on the Non-Contact Cooling Water Schedule General

Permit for Light Commercial Facilities, LAG480000. PQ Corporation is currently set up to continuously monitor pH, therefore, this has been incorporated into the permit as continuous monitoring with the pH range excursion provision.

Limits Justification: Flow reporting is consistent with LAC 33:IX.2707.I.1.b.

TOC, Oil and Grease, Temperature, Total Residual Chlorine, and pH limits are consistent with the limits established in Light Commercial General Permit under the Non-Contact Cooling Water and Utility Wash Water Schedules (Schedules C and E), similar discharges, and existing permits for similar outfalls.

The usage of concentration limits is based on BPJ for similar outfalls since the flow is variable and estimated.

6. WATER QUALITY-BASED EFFLUENT LIMITATIONS SCREEN

In accordance with LAC 33:IX.2707.D.1/40 CFR § 122.44(d)(1), the existing (or potential) discharge (s) was evaluated in accordance with the <u>Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards</u>, LDEQ, September 27, 2001, to determine whether pollutants would be discharged "at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard." Calculations, results, and documentation are given in Appendix A.

The following pollutants received water quality based effluent limits:

NONE

Minimum quantification levels (MQL's) for state water quality numerical standards-based effluent limitations are set at the values listed in the <u>Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards</u>, LDEQ, September 27, 2001.

7. COMPLIANCE HISTORY

This facility is currently covered under the City of Pineville's Municipal Sewage Treatment Plant, permit LA0033464.

- A. Compliance History
 - 1. WQMD None
 - 2. Other Divisions None
- B. DMR Review/Excursions

<u>Date</u> <u>Parameter</u> <u>Outfall</u> <u>Reported Value</u> <u>Permit Limits</u>
No DMRs on file since the discharges from this facility are covered under permit LA0033464.

C. Inspections

A facility inspection, conducted on August 28, 2002, found no areas of concern.

8. EXISTING EFFLUENT LIMITS

None. This facility is currently covered under the City of Pineville's Municipal Sewage Treatment Plant, permit LA0033464.

9. ENDANGERED SPECIES

The receiving waterbody, Subsegment 081603 of the Ouachita River Basin is not listed in Section II.2 of the Implementation Strategy as requiring consultation with the U.S. Fish and Wildlife Service (FWS). This strategy was submitted with a letter dated October 21, 2005 from Watson (FWS) to Gautreaux (LDEQ). Therefore, in accordance with the Memorandum of Understanding between the LDEQ and the FWS, no further informal (Section 7, Endangered Species Act) consultation is required. It was determined that the issuance of the LPDES permit is not likely to have an adverse effect on any endangered or candidate species or the critical habitat. The effluent limitations established in the permit ensure protection of aquatic life and maintenance of the receiving water as aquatic habitat.

10. HISTORIC SITES

The discharge is from an existing facility location, which does not include an expansion on undisturbed soils. Therefore, there should be no potential effect to sites or properties on or eligible for listing on the National Register of Historic Places, and in accordance with the "Memorandum of Understanding for the Protection of Historic Properties in Louisiana Regarding LPDES Permits" no consultation with the Louisiana State Historic Preservation Officer is required.

11. TENTATIVE DETERMINATION

On the basis of preliminary staff review, the Department of Environmental Quality has made a tentative determination to reissue a permit for the discharge described in the application.

12. PUBLIC NOTICES

Upon publication of the public notice, a public comment period shall begin on the date of publication and last for at least 30 days thereafter. During this period, any interested persons may submit written comments on the draft permit and may request a public hearing to clarify issues involved in the permit decision at this Office's address on the first page of the statement of basis. A request for a public hearing shall be in writing and shall state the nature of the issues proposed to be raised in the hearing.

Public notice published in:

Local newspaper of general circulation

Office of Environmental Services Public Notice Mailing List

13. STORM WATER REQUIREMENT

Stormwater discharges are covered under the Multi-Sector General Permit, LAR05M520, effective on June 19, 2001.

Should Multi-Sector General Permit coverage be canceled at any time, PQ Corporation must request a permit modification to include additional stormwater outfalls, a stormwater pollution prevention plan, and any additional stormwater requirements current at the time.

14. TMDL WATERBODY

The discharges include process wastewater including cooling water (chainwater), filter backwash, and miscellaneous de minimis process related wastewaters; railcar washout water; and low contamination potential stormwater runoff are to Flagon Bayou via an unnamed ditch, thence to Catahoula Lake, Segment No. 081603, of the Ouachita River Basin. The 2004 Integrated Report shows the following impairments oil & grease, organic enrichment/low DO, pathogen indicators and Mercury.

Oil & Grease

A limit of 15 mg/L (daily maximum) has been established in this permit to address the oil & grease impairment of this waterbody. This limit is consistent with the limits established in the Light Commercial General Permit for similar discharges and considered protective of waters of the state.

Organic Enrichment/low DO

A daily maximum limitation of 50 mg/L has been established for TOC to address the organic enrichment/low DO impairment. This limit is consistent with the limits established in the Light Commercial General Permit (Schedule C) for similar discharges and considered protective of waters of the state.

Pathogen Indicators

Pathogen Indicators is associated with fecal coliform in sanitary wastewater. PQ Corporation is not permitted to discharge sanitary wastewater. Therefore, no additional requirements were placed in this permit.

Mercury

The Mercury impairment was addressed in the Mercury TMDL for Little River and Catahoula Lake Watershed, issued in the Federal Register Notice: Volume 68, Number 48, page 11858 (3/12/2003). This facility was not considered in the TMDL since the discharges are covered under another permit. However, it has been determined that dischargers from PQ Corporation do not have reasonable potential to contain mercury. Therefore, no additional requirements were placed in this permit.

Date:

02/09

Appendix A-1

Developer: Bruce Fielding Time: 03:00 PM

Software: Lotus 4.0

LA0002780, AI32739

Page 1

Revision date: 02/14/05

Water Quality Screen for PQ Corporation / Pineville Plant

We	iter Quality	screen for PQ Corpor	ation / Pine	VIIIe Plant		
Input variables:						
Receiving Water Characterist	ics:	Dilution:		Toxicity Dilutio	n Series:	
		ZID Fs =	0.1	Biomonitoring di	lution:	0.182209
Receiving Water Name= Unna	med ditch, th	hence to Flagon Bayo	าน	Dilution Series	Factor:	0.75
Critical flow (Qr) cfs=	0.1	MZ Fs ≠	1			
Harm. mean/avg tidal cfs=	1	Critical Qr (MGD) =	0.06463			Percent Effluent
Drinking Water=1 HHNPCR=2		Harm. Mean (MGD) =	0.6463	Dilution No. 1		24.295
Marine, l=y, 0=n		ZID Dilution =	0.690217	Dilution No. 2		18.2209%
Rec. Water Hardness=	19.5	MZ Dilution =	0.182209	Dilution No. 3		13.6657%
Rec. Water TSS=	7.3	HHnc Dilution=	0.182209	Dilution No. 4		10.2493%
Fisch/Specific=1,Stream=0		HHc Dilution=	0.021795	Dilution No. 5		7.6870%
Diffuser Ratio=		ZID Upstream *	0.448819			
		MZ Upstream =	4.488194	Partition Coeffici	ents; Diss	olved>Total
Effluent Characteristics:		MZhhnc Upstream=	4.488194			
Permittee* PQ (Corporation /	Pineville Plant		METALS	FW	
Permit Number= LA06	02780, AI327	39		Total Arsenic	1.820991	
Facility flow (Qef),MGD= 0.	.0144	MZhhc Upstream=	44.88194	Total Cadmium	4.089072	
		ZID Hardness=		Chromium III	4.861641	
Outfall Number =	2	MZ Hardness=		Chromium VI	1	
Eff. data, 2=lbs/day		ZID TSS=		Total Copper	2.743802	
MQL, 2=lbs/day	1	MZ TSS=		Total Lead	5.166991	
Effluent Hardness=	N/A	Multipliers:		Total Mercury	3.195497	
Effluent TSS=	N/A	WLAa> LTAa	0.32	Total Nickel	2.151927	
WQBL ind. 0=y, 1=n		WLAC> LTAC	0.53	Total Zinc	3.269378	
Acute/Chr. ratio 0=n, 1=y	0	LTA a,c>WQBL avg	1.31			
Aquatic,acute only1=y,0=n		LTA a,c>WQBL max	3.11	Aquatic Life, Di	ssolved .	
		LTA h> WQBL max	2.38	Metal Criteria,	ug/L	
Page Numbering/Labeling		WQBL-limit/report	2.13	METALS	ACUTE	CHRONIC
Appendix Appe	endix A-1	WLA Fraction	1	Arsenic	339.8	150
Page Numbers 1=y, 0=n	1	WQBL Fraction	1	Cadmium	5.395402	0.307127
Input Page # 1=y, 0=n	1			Chromium III	143.8479	46.66277
		Conversions:		Chromium VI	15.712	10.582
Fischer/Site Specific inputs	:	ug/L>lbs/day Qef	0.00012	Copper	3.949158	3,038601
Pipe=1,Canal=2,Specific=3		ug/L>lbs/day Qec	0	Lead	10.48687	0.408658
Pipe width, feet		ug/L>lbs/day Qr	0.000834	Mercury	1.734	0.012
ZID plume dist., feet		lbs/day>ug/L Qeo	8326.672	Nickel	355.0181	39.4276
MZ plume dist., feet		lbs/day>ug/L Qef	8326.672	Zinc	28.64522	26.15743
HHnc plume dist., feet		diss>tot 1=y0=n	1			
HHc plume dist., feet		Cu diss~>tot1=y0*r	1	Site Specific Mu	ıltiplier V	alues:
		cfs>MGD	0.6463	CV ±		
Fischer/site specific dilution	ons:			N =		
F/specific ZID Dilution =		Receiving Stream:		WLAa> LTAa		
F/specific MZ Dilution =		Default Hardness=	25	WLAC> LTAC		
F/specific HHnc Dilution=		Default TSS=	10	LTA a,c>WQBL a	=	
F/specific HHc Dilution=		99 Crit., 1=y, 0=r	1	LTA a,c>WQBL n	nax	

LTA h --> WQBL max

Appendix A-1
PQ Corporation / Pineville Plant
LA0002780, AI32739

(*2)	(*3)	(*4)	(*5)	(*6)	(*7)	(*8)	(*9	(*10)	(*11)
CuE	ffluent E	ffluent	MQL1	Effluent	95th	3 %	Nu	merical C	riteria	нн
Instream	/Tech	/Tech	:	I=No 95%	est	imate	Acute	e Chroni	с ннирм	Carcinogen
Conc.	(Avg)	(Max)	(0=95 %	Non-	Tech	FW	FW		Indicator
uq/L	uq/L	ug/L	uq/L			ug/L	uq/i	L ug/	L ug/	L "C"
-3, -	. 3.	- 3, -	3, -			J , -	3,			- -
	14		5	0	2	9.82	700	350	50	
			10							
			10				383	192		
			10							
			10							
			10							
			10							
			10				618.7728	273.1487		
			1				22.06219	1.255864		
	0.0075		10	0	0.01	5975	699.3367	226.8576		
			10				15.712	10.582		
	0.005		10	Q	0.0	1065	10.83571	8.33732		
	0.006		5	0	0.0	1278	54.18558	2.111534		
	0.0006		0.2	0	0.00	1278	5.540991	0.038346		
			40				763.9729	84.84532		
	0.078		20	0	0.1	6614	93.65205	85.51853		
			20				45.9	5.2	12844	
		1	0E-005						7.2E-007	c
		~.	002						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-
			10				2249	1125	12.5	c
			10				2930	1465	34.7	C
			10						3.3	C
			10				2730	1365	1.2	С
			10				2890	1445	70	c
			10						5.08	c
			10				11800	5900	6.8	c
			10				1160	580	0.58	c
			10				606	303	162.79	
			10				3200	1600	8100	
			50				55000	27500		
			20				19300	9650	87	c
			10				932	466	1.8	С
	CuE Instream	CuEffluent E Instream /Tech Conc. (Avg) ug/L ug/L 14 0.0075 0.005 0.0006	CuEffluent Effluent Instream /Tech /Tech Conc. (Avg) (Max) ug/L ug/L ug/L 14 0.0075 0.005 0.006 0.0006 0.078	CuEffluent Effluent MQL Instream /Tech /Tech Conc. (Avg) (Max) ug/L ug/L ug/L ug/L 14	CuEffluent Effluent Instream /Tech /Tech /Tech 1=No 95% Conc. (Avg) (Max) 0=95 % ug/L ug/L ug/L ug/L ug/L 14	Cueffluent Effluent MQLEffluent 95tl Instream /Tech /Tech 1=No 95t est Conc. (Avg) (Max) 0=95t Non- ug/L ug/L ug/L ug/L 14 5 0 2 10	CuEffluent Effluent Instream /Tech /Tech	Cueffluent Effluent MQLEffluent 95th % Number Numbe	Cueffluent Effluent MQLEffluent 95th % cutimate Numerical C Chronic Conc. (Avg) (Max) 0-95 % Non-Tech FW FW Ug/L Ug/L <td>Cueffluent Effluent MQLEffluent 95th % Numerical Criteria Instream / Tech /Tech 1=No 95th % Non-Tech FW FW GW </td>	Cueffluent Effluent MQLEffluent 95th % Numerical Criteria Instream / Tech /Tech 1=No 95th % Non-Tech FW FW GW

Appendix A-1 PO Corporation / Pineville Plant LA0002780, AI32739

(*1) Toxic	(*12) WLAa	(*13 WLA) (*18) h Limitine			(*21) WQBL	(*22)	
Parameters							•	-				
relametels	Acute	Chroni	C HAMDW	Acut	e Cilioni	C HAINDW	и,с,ин	Avç	g Max	Avg	Maxv	OBL?
	ug/L	. ug/:	L ug/i	L ug/1	L ug/	L ug/	և ug/l	L ug/1	L ug/L	lbs/day	lbs/day	
NONCONVENTIONAL											_	
Total Phenols (4AAP)	1014.174	1920.868	274.4097	324.5356	1018.06	274.4097	274.4097	274.4097	653.0951	0.032956	0.078434	no
3-Chlorophenol												по
4-Chlorophenol	554.8978	1053.733		177.5673	558.4787		177.5673	232.6132	552,2343	0.027936	0.066321	no
2,3-Dichlorophenol												no
2,5-Dichlorophenol					-							no
2,6-Dichlorophenol												no
3,4-Dichlorophenol												по
2,4-Dichlorophenocy-												
acetic acid (2,4-D)												no
2-(2,4,5-Trichlorophen	-											
oxy) propionic acid												
(2,4,5-TP, Silvex)												no
, ., ,,												
METALS AND CYANIDE		,										
Total Arsenic	896.49	1499.093		286.8768	794.5192		286.8768	375.8086	892.1868	0.045133	0.107148	no
Total Cadmium	31.96413	6.892426		10.22852	3.652986		3.652986	4.785412	11.36079	0.000575	0.001364	no
Chromium III	1013.213	1245.039		324.2281	659.8705		324.2281	424.7388	1008.349	0.051009	0.121099	no
Chromium VI	22.76385	58.07607		7.284432	30.78032		7.284432	9.542606	22.65458	0.001146	0.002721	no
Total Copper	15.69899	45.75684		5.023676	24.25112		5.023676	6.581016	15.62363	0.00079	0.001876	no
Total Lead	78.50512	11.58851	-	25.12164	6.141911		6.141911	B.045903	19.10134	0.000966	0.002294	no
Total Mercury	8.027896	0.21045		2.568927	0.111539		0.111539	0.146115	0.346885	0.000018	0.000042	no
Total Nickel	1106.859	465.6476		354.1948	246.7932		246.7932	323.2991	767.5269	0.038827	0.092177	no
Total Zinc	135.6849	469.3423		43.41917	248.7514		43.41917	56.87912	135.0336	0.006831	0.016217	no
Total Cyanide	66.50081	28.53861	70490.37	21.28026	15.12546	70490.37	15.12546	19.81436	47.04019	0.00238	0.005649	no
DIOXIN												
2,3,7,8 TCDD; dioxin			0.000033			0 000033	0.000033	0.00003.3	0 000079	4E-009	9.4E-009	по
2,3,7,8 1CDD; GIOXIII			0.000033			0.000033	0.000033	0.000033	0.000073	46-003	9.46-009	110
VOLATILE COMPOUNDS												
Benzene	3258.395	6174.219	573.5243	1042.686	3272.336	573.5243	573.5243	573.5243	1364.988	0.068878	0.16393	no
Bromoform	4245.041	8040.205	1592.103	1358.413	4261.309	1592.103	1358.413	1779.521	4224.665	0.213713	0.507365	no
Bromodichloromethane			151.4104			151.4104	151.4104	151.4104	360,3568	0.018184	0.043277	no
Carbon Tetrachloride	3955.277	7491.385	55.05833	1265.689	3970.434	55.05833	55.05833	55.05833	131.0388	0.006612	0.015737	no
Chloroform	4187.08B	7930.441	3211.736	1339.868	4203.134	3211.736	1339.868	1755.227	4166.99	0.210796	0.500439	по
Dibromochloromethane			233.0803			233.0803	233.0803	233.0803	554.7311 (0.027992	0.066621	no
1.2-Dichloroethane	17096.07	32380.35	311.9972	5470.742	17161.58	311.9972	311.9972	311.9972	742.5534	0.03747	0.089178	no
1,1-Dichloroethylene	1680.631	3183.153	26.61153	537.8018	1687.071	26.61153	26.61153	26.61153	63.33544	0.003196	0.007606	no
1,3-Dichloropropylene	877.9846	1662.923	893.4232	280.9551	881.3491	893.4232	280.9551	368.0511	873.7703	0.044201	0.104936	no
Ethylbenzene	4636.222	8781.111	44454.38	1483.591	4653.989	44454.38	1483.591	1943.504	4613.968	0.233407	0.554119	no
Methyl Chloride	79685.07	150925.3		25499.22	79990.43		25499.22	33403.98	79302.58	4.011685	9.523923	no
Methylene Chloride	27962.22	52961.08	3991.729	8947.909	28069.37	3991.729	3991.729	3991.729	9500.315	0.479391	1.14095	no
1,1,2,2-Tetrachloro-												
ethane	1350.3	2557.499	82.5875	432.0959	1355.474	82.5875	82.5875	82.5875	196.5583	0.009918	0.023606	no

Appendix A-1 PQ Corporation / Pineville Plant LA0002780, AI32739

(*1)	(*2)	{*3}	(*4)	(*5)	(*6		(*8)	(*9)		(*11)
Taxic		Effluent :				95th %		rical Cr		НН
Parameters	Instream	/Tech	/Tech		¥0 95¥		Acute	Chronic		Carcinogen
	Conc.	(Avg)	(Max)		95 %	Non-Tech	FW	FW		Indicator
	ug/L	ug/L	ug/L	ug/L		ug/L	ug/L	ug/l	, ug/L	"C"
VOLATILE COMPOUNDS (con	t'd)									
Tetrachloroethylene				10			1290	645	2.5	C
Toluene		13.4		10	0	28.542	1270	635	46200	
1,1,1-Trichloroethane				10			5280	2640		
1,1,2-Trichloroethane				10			1800	900	6,9	С
Trichloroethylene				10			3900	1950	21	С
Vinyl Chloride				10					35.8	C
ACID COMPOUNDS										
2-Chlorophenol				10			258	129	126.4	
2,4-Dichlorophenol				10			202	101	232.6	
BASE NEUTRAL COMPOUNDS										
Benzidine				50			250	125	0.00017	С
Hexachlorobenzene				10					0.00025	C
Hexachlorabutadiene				10			5.1	1.02	0.11	· c
PESTICIDES										
Aldrin				0.05			3		0.0004	С
Hexachlorocyclohexane										
(gamma BHC, Lindane)				0.05			5.3	0.21	0.2	С
Chlordane				0.2			2.4	0.0043	0.00019	C
4,4'-DDT				0.1			1.1	0.001	0.00019	С
4,4'-DDE				0.1			52.5	10.5	0.00019	С
4 , 4 ' - DDD				0.1			0.03	0.006	0.00027	С
Dieldrin				0.1			0.2374	0.0557	0.00005	C
Endosulfan				0.1			0.22	0.056	0.64	
Endrin				0.1			0.0864	0.0375	0.26	
Heptachlor				0.05			0.52	0.0038	0.00007	С
Toxaphene				5			0.73	0.0002	0.00024	c
Other Parameters:										
Fecal Col.(col/100ml)										
Chlorine							19	11		
Ammonia								4000		
Chlorides										

 ${\tt Chlorides}$

Sulfates

TDS

Appendix A-1 PO Corporation / Pineville Plant LA0002780, AI32739

(*1)	(*12)	(*13)	(*14)	(*15)	(*16)	(*17)	(*18)	(*19)	(*20)	(*21)	(*22) (*23}
Toxic	WLAa	MLAC	: WLA	n LTAa	LTA:	c LTA	n Limiting	WQBI	WQBL	WQBL	WQBL	Need
Parameters	Acute	e Chronic	HHNDW	Acute	Chroni	C HHNDW	A,C,HH	Avo	Max	Avg	MaxW	QBL?
	ug/I	. ug/I	L ug/I	L ug/I	. ug/1	L ug/I	ı ug/I	. ug/I	ug/L	lbs/day	lbs/day	
Tetrachloroethylene	1868.977	3539.885	114.7049	598.0727	1876.139	114.7049	114.7049	114.7049	272.9976	0.013776	0.032786	по
Toluene									1831.169			по
1,1,1-Trichloroethane	7649.767	14488.83		2447.925	7679.082		2447.925	3206.782	7613.048 (0.385122	0.914297	no
1,1,2-Trichloroethane	2607.875	4939.375	316.5854	834.52	2617.869	316.5854	316.5854	316.5854	753,4733 (0.038021	0.090489	no
Trichloroethylene	5650.396	10701.98	963.5208	1808.127	5672.049	963.5208	963.5208	963.5208	2293.18	0.115715	0.275402	no
Vinyl Chloride			1642.574			1642.574	1642.574	1642.574	3909.325	0.197267	0.469494	no
•												
ACID COMPOUNDS												
2-Chlorophenol	373.7954	707.9771	693.7078	119.6145	375.2279	693.7078	119.6145	156.695	372.0012	0.018818	0.044676	no
2,4-Dichlorophenol	292.6615	554.3076	1276.554	93.65169	293.783	1276.554	93.65169	122.6837	291.2568	0.014734	0.034979	no
BASE NEUTRAL COMPOUNDS												
Benzidine	362.2049	686.0243	0.0078	115.9056	363.5929	0.0078	0.0078	0.0078	0.018564	9.4E-007	0.000002	no
Hexachlorobenzene			0.01147			0.01147	0.01147	0.01147	0.0273	0.000001	0.00003	no
Hexachlorabutadiene	7.388979	5.597958	5.047014	2.364473	2.966918	5.047014	2.364473	3.09746	7.353512	0.000372	0.000883	no
PESTICIDES												
Aldrin	4.346458		0.018353	1.390867		0.018353	0.018353	0.018353	0.04368	0.000002	0.000005	no
Hexachlorocyclohexane												
(gamma BHC, Lindane)						9.176389				0.000096		no
Chlordane									0.020748			no
4,4'-DDT									0.009046			no
4,4'-DDE									0.020748			no
4,4'-DDD									0.029484 (no
Dieldrin									0.00546			no
Endosulfan									0.31721			no
Endrin	•								0.124577			no
Heptachlor	0.753386	0.020855	0.003212	0.241084	0.011053	0.003212	0.003212	V.003212	0.007644	3.96-007	9.2E-007	ло
Toxaphene	1.057638	0.001098	0.011012	0.338444	0.000582	0.011012	0.000582	0.000762	0.001809	9.2E-008	2.2E-007	no
Other Parameters:												
Fecal Col. (col/100ml)												no
Chlorine	27.52757			8.808822	31 99617		8.808822	11.53956	27.39544	0.001386	0.00329	no
Ammonia		21952.78			11634.97				36184.76			no
Chlorides												по
Sulfates											••-	no
TDS												no
•												
												no
												no

APPENDIX A-2 LA0002780, AI No. 32739

Documentation and Explanation of Water Quality Screen and Associated Lotus Spreadsheet

Each reference column is marked by a set of parentheses enclosing a number and asterisk, for example (*1) or (*19). These columns represent inputs, existing data sets, calculation points, and results for determining Water Quality Based Limits for an effluent of concern. The following represents a summary of information used in calculating the water quality screen:

```
Receiving Water Characteristics:
Receiving Water: Flagon Bayou, thence to Cathoula Lake
Critical Flow, Qrc (cfs): 0.1
Harmonic Mean Flow, Qrh (cfs): 1
Segment No.: 081603
Receiving Stream Hardness (mg/L): 19.5
Receiving Stream TSS (mg/L): 7.3
MZ Stream Factor, Fs: 1
Plume distance, Pf: N/A
Effluent Characteristics:
Company: PQ Corporation
Facility flow, Qe (MGD): 0.0144
Effluent Hardness: N/A
Effluent TSS: N/A
Pipe/canal width, Pw: N/A
Permit Number: LA0002780
Variable Definition:
Qrc, critical flow of receiving stream, cfs
Orh, harmonic mean flow of the receiving stream, cfs
Pf = Allowable plume distance in feet, specified in LAC 33.IX.1115.D
Pw = Pipe width or canal width in feet
Qe, total facility flow, MGD
Fs, stream factor from LAC.IX.33.11 (1 for harmonic mean flow)
Cu, ambient concentration, ug/L
Cr, numerical criteria from LAC.IX.1113, Table 1
WLA, wasteload allocation
LTA, long term average calculations
WQBL, effluent water quality based limit
ZID, Zone of Initial Dilution in % effluent
MZ, Mixing Zone in % effluent
Formulas used in aquatic life water quality screen (dilution type WLA):
Streams:
```

Oe (Qrc x 0.6463 x Fs + Qe)

Dilution Factor = _

Appendix A-2 LA0002780, AI No. 32739

Page 2

WLA a,c,h = $\frac{Cr}{Dilution Factor}$ - $\frac{(Fs \times Orc \times 0.6463 \times Cu)}{Qe}$

Static water bodies (in the absence of a site specific dilution):

Discharge from a pipe:

Discharge from a canal:

Critical Dilution = (2.8) Pw $\pi^{1/2}$

Critical
Dilution = $\frac{(2.38)(Pw^{1/2})}{(Pf)^{1/2}}$

WLA = $\frac{\text{(Cr-Cu) Pf}}{\text{(2.8) Pw } \pi^{1/2}}$

 $WLA = \frac{(Cr-Cu) pf^{1/2}}{2.38 pw^{1/2}}$

Formulas used in human health water quality screen, human health non-carcinogens (dilution type WLA):

Streams:

Dilution Factor = $\frac{Qe}{(Qrc \times 0.6463 + Qe)}$

WLA a,c,h = $\frac{Cr}{Dilution Factor}$ - $\frac{(Orc \times 0.6463 \times Cu)}{Qe}$

Formulas used in human health water quality screen, human health carcinogens (dilution type WLA):

Dilution Factor = $\frac{Qe}{(Qrh \times 0.6463 + Qe)}$

WLA a,c,h = $\frac{Cr}{Dilution Factor}$ - $\frac{(Orh \times 0.6463 \times Cu)}{Qe}$

Static water bodies in the absence of a site specific dilution (human health carcinogens and human health non-carcinogens):

Discharge from a pipe:

Discharge from a canal:

Critical Dilution = (2.8) Pw $\pi^{1/2}$

Critical
Dilution = $\frac{(2.38)(Pw^{1/2})}{(Pf)^{1/2}}$

WLA = $\frac{\text{(Cr-Cu) Pf*}}{\text{(2.8) Pw } \pi^{1/2}}$ WLA = $\frac{\text{(Cr-Cu) Pf}^{1/2}*}{2.38 \text{ Pw}^{1/2}}$

* Pf is set equal to the mixing zone distance specified in LAC 33:IX.1115 for the static water body type, i.e., lake, estuary, Gulf of Mexico, etc.

If a site specific dilution is used, WLA are calculated by subtracting Cu from Cr and dividing by the site specific dilution for human health and aquatic life criteria.

Longterm Average Calculations:

LTAa = WLAa X 0.32

LTAc = WLAc X 0.53

LTAh = WLAh

WQBL Calculations:

Select most limiting LTA to calculate daily max and monthly avg WOBL

If aquatic life LTA is more limiting:
Daily Maximum = Min(LTAa, LTAc) X 3.11
Monthly Average = Min(LTAc, LTAc) X 1.31

If human health LTA is more limiting: Daily Maximum = LTAh X 2.38 Monthly Average = LTAh

Mass Balance Formulas:

mass (lbs/day): $(ug/L) \times 1/1000 \times (flow, MGD) \times 8.34 = lbs/day$

concentration(ug/L): $\frac{lbs/day}{(flow, MGD) \times 8.34 \times 1/1000} = ug/L$

The following is an explanation of the references in the spreadsheet.

- (*1) Parameter being screened.
- (*2) Instream concentration for the parameter being screened in ug/L. In the absence of accurate supporting data, the instream concentration is assumed to be zero (0).
- (*3) Monthly average effluent or technology value in concentration units of ug/L or mass units of lbs/day. Units determined on a case-by-case basis as appropriate to the particular situation.
- (*4) Daily maximum technology value in concentration units of ug/L or mass units of lbs/day. Units determined on a case-by-case basis as appropriate to the particular situation.
- (*5) Minimum analytical Quantification Levels (MQL's). Established in a letter dated January 27, 1994 from Wren Stenger of EPA Region 6 to Kilren Vidrine of LDEQ and from the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". The applicant must test for the parameter at a level at least as sensitive as the specified MQL. If this is not done, the MQL becomes the application value for screening purposes if the pollutant is suspected to be present

- on-site and/or in the waste stream. Units are in ug/l or lbs/day depending on the units of the effluent data.
- (*6) States whether effluent data is based on 95th percentile estimation. A "1" indicates that a 95th percentile approximation is being used, a "0" indicates that no 95th percentile approximation is being used.
- (*7) 95th percentile approximation multiplier (2.13). The constant, 2.13, was established in memorandum of understanding dated October 8, 1991 from Jack Ferguson of Region 6 to Jesse Chang of LDEQ and included in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". This value is screened against effluent Water Quality Based Limits established in columns (*18) (*21). Units are in ug/l or lbs/day depending on the units of the measured effluent data.
- (*8) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, freshwater (FW) or marine water (MW) (whichever is applicable) aquatic life protection, acute criteria. Units are specified. Some metals are hardness dependent. The hardness of the receiving stream shall generally be used, however a flow weighted hardness may be determined in site-specific situations. Dissolved metals are converted to Total metals using partition coefficients in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Similar to hardness, the TSS of the receiving stream shall generally be used, however, a flow weighted TSS may be determined in site-specific situations.
 Hardness Dependent Criteria:

Metal Formula

<u>Metal</u>

```
      Cadmium
      e(1.1280[ln(hardness)] - 1.6774)

      Chromium III
      e(0.8190[ln(hardness)] + 3.6880)

      Copper
      e(0.9422[ln(hardness)] - 1.3884)

      Lead
      e(1.2730[ln(hardness)] - 1.4600)

      Nickel
      e(0.8460[ln(hardness)] + 3.3612)

      Zinc
      e(0.8473[ln(hardness)] + 0.8604)
```

Dissolved to Total Metal Multipliers for Freshwater Streams (TSS dependent):

Arsenic						$TSS^{-0.73}$		
Cadmium						TSS ^{-1.13}	X	TSS
Chromium	III	1	+	3.36	Х		Х	TSS
Copper		1	+	1.04	Х	TSS-0.74	Х	TSS
Lead		1	+	2.80	X.		х	TSS
Mercury		1	+	2.90	X	TSS-1.14		TSS
Nickel		1	+	0.49	Х	TSS ^{-0.57}	Х	TSS
Zinc		1	+	1.25	Х	TSS ^{-0.70}	Х	TSS

Multiplier

Dissolved to Total Metal Multipliers for Marine Environments (TSS dependent):

Metal Multiplier

```
Copper 1 + (10^{4.86} \text{ X TSS}^{-0.72} \text{ X TSS}) \text{ X } 10^{-6}

Lead 1 + (10^{6.06} \text{ X TSS}^{-0.85} \text{ X TSS}) \text{ X } 10^{-6}

Zinc 1 + (10^{5.36} \text{ X TSS}^{-0.52} \text{ X TSS}) \text{ X } 10^{-6}
```

If a metal does not have multiplier listed above, then the dissolved to total metal multiplier shall be 1.

(*9) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, freshwater (FW) or marine water (MW) (whichever is applicable) aquatic life protection, chronic criteria. Units are specified. Some metals are hardness dependent. The hardness of the receiving stream shall generally be used, however a flow weighted hardness may be determined in site-specific situations. Dissolved metals are converted to Total metals using partition coefficients in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Similar to hardness, the TSS of the receiving stream shall generally be used, however, a flow weighted TSS may be determined in site-specific situations.
Hardness dependent criteria:

Metal Formula

Cadmium	e (0.7852[ln(hardness)] - 3.4900)
Chromium III	e (0.8473[ln(hardness)] + 0.7614)
Copper	(0.8545[ln(hardness)] - 1.3860)
Lead	(1.2730[ln(hardness)] - 4.7050)
Nickel	e (0.8460[ln(hardness)] + 1.1645)
	(0.8473[ln(hardness)] + 0.7614)
Zinc	е

Dissolved to total metal multiplier formulas are the same as (*8), acute numerical criteria for aquatic life protection.

- (*10) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, human health protection, drinking water supply (HHDW), nondrinking water supply criteria (HHNDW), or human health non-primarry contact recreation (HHNPCR) (whichever is applicable). A DEQ and EPA approved Use Attainability Analysis is required before HHNPCR is used, e.g., Monte Sano Bayou. Units are specified.
- (*11) C if screened and carcinogenic. If a parameter is being screened and is carcinogenic a "C" will appear in this column.
- (*12) Wasteload Allocation for acute aquatic criteria (WLAa). Dilution type WLAa is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the acute aquatic numerical criteria for that parameter. Units are in ug/L. Dilution WLAa formulas for streams:

WLAa = $(Cr/Dilution Factor) - (Fs \times Orc \times 0.6463 \times Cu)$

Q

Dilution WLAa formulas for static water bodies: WLAa = (Cr-Cu)/Dilution Factor)

Cr represents aquatic acute numerical criteria from column (*8). If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*13) Wasteload Allocation for chronic aquatic criteria (WLAc). Dilution type WLAc is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the chronic aquatic numerical criteria for that parameter. Units are in ug/L. Dilution WLAc formula:

WLAc = (Cr/Dilution Factor) - (Fs x Orc x 0.6463 x Cu)

0e

Dilution WLAc formulas for static water bodies:

WLAc = (Cr-Cu)/Dilution Factor)

Cr represents aquatic chronic numerical criteria from column (*9).

If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*14) Wasteload Allocation for human health criteria (WLAh). Dilution type WLAh is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the human health numerical criteria for that parameter. Units are in ug/L. Dilution WLAh formula:

WLAh = (Cr/Dilution Factor) - (Fs x Orc, Orh x 0.6463 x Cu)

Qe

Dilution WLAh formulas for static water bodies:

WLAh = (Cr-Cu)/Dilution Factor)

Cr represents human health numerical criteria from column (*10).

If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

- (*15) Long Term Average for aquatic numerical criteria (LTAa). WLAa numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 0.32. WLAa X 0.32 = LTAa.
 - If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.
- (*16) Long Term Average for chronic numerical criteria (LTAc). WLAc numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 0.53. WLAc X 0.53 = LTAc.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*17) Long Term Average for human health numerical criteria (LTAh). WLAh numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 1. WLAc X 1 = LTAh.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

- (*18) Limiting Acute, Chronic or Human Health LTA's. The most limiting LTA is placed in this column. Units are consistent with the WLA calculation. If standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then the type of limit, Aquatic or Human Health (HH), is indicated.
- (*19) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of concentration, ug/L. If aquatic life criteria was the most limiting LTA then the limiting LTA is multiplied by 1.31 to determine the average WQBL (LTA_{limiting aquatic} X 1.31 = WQBL_{monthly average}). If human health criteria was the most limiting criteria then LTAh = WQBL_{monthly average}. If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then either the human health criteria or the chronic aquatic life criteria shall appear in this column depending on which is more limiting.
- (*20) End of pipe Water Quality Based Limit (WQBL) daily maxium in terms of concentration, ug/L. If aquatic life criteria was the most limiting LTA then the limiting LTA is multiplied by 3.11 to determine the daily maximum WQBL (LTA_{limiting aquatic} X 3.11 = WQBL_{daily max}). If human health criteria was the most limiting criteria then LTAh is multiplied by 2.38 to determine the daily maximum WQBL (LTA_{limiting aquatic} X 2.38 = WQBL_{daily max}). If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then either the human health criteria or the acute aquatic life criteria shall appear in this column depending on which is more limiting.
- (*21) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of mass, lbs/day. The mass limit is determined by using the mass balance equations above. Monthly average WQBL, ug/l/1000 X facility flow, MGD X 8.34 = monthly average WQBL, lbs/day.
- (*22) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of
 mass, lbs/day. Mass limit is determined by using the mass balance
 equations above. Daily maximum WQBL, ug/l/1000 X facility flow, MGD X
 8.34 = daily maximum WQBL, lbs/day.
- (*23) Indicates whether the screened effluent value(s) need water quality based limits for the parameter of concern. A "yes" indicates that a water quality based limit is needed in the permit; a "no" indicates the reverse.

APPENDIX B

		EFFLUENT		T		
OUTFALL NO.: 800 2			TRATION pm)	MASS (lbs/day)		
POLLUTANT	MQL*	Monthly Average	Daily Maximum	Monthly Everage	Daily Maximum	
METALS, CYANIDE, AND TOTAL PHENOLS - 1	use EPA Appro	ved Method	(M/L)	(19/L)	 	
Antimony, Total	60	<.004	2,010	2.010		
Arsenic, Total	10	0.01	<.010	<.010		
Beryllium, Total	5	< 0.01	∠,001	∠.001		
Cadmium, Total	l	0.002	<.002	4.002		
Chromium, Total	10	0.027	0.0075	<.005		
Chromium, Hexavalent	10	0.07				
Copper. Total	10	0.008	∠.005	.069		
Lead, Tolal	5	< 0.01	0.006	4.006		
Mercury, Total	0.2	0.0007	.0006	, 0006		
Nickel, Total [Marine]	5	N/A				
Nickel, Total [Freshwater]	40	0.04.	<.005	2.005		
Selenium, Total	5	< 0.01	4.010	∠.010		
Silver, Total	. 5	0.055	<.005	Z, 005		
Thallium, Total	io	< 0.01	ح. 020	∠. 020		
Zinc, Total	20	0.052	, 078	.107		
Cyanide. Total	20	40.001	∠,010	∠.010		
Cyanide, Free		40.001				
Phenols, Total	5	0.014	∠.005	L.006		

Q DUTFALL SUPPLY # 002 WATER

Form SCC-2 (Revised 01/01)

1-5-2006

		EFFLUENT							
OUTFALL NO.: ODQ		1	TRATION om)		ASS s/day)				
POLLUTANT	MQL* (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum				
VOLATILE ORGANIC CHEMICALS - EPA Metho	od 624 suggeste	ed							
acrolein	50	450							
acrylonitrile	50	<50							
benzene	10	410							
bromoform	10	<10							
carbon tetrachloride	10	<10							
chlorobenzene	50	< 50							
chlorodibromomethane	10	(50							
chloroethane	10	210							
2-chloroethylvinyl ether	50	410							
chloroform	10	۷10							
dichlorobromomethane	10	(10							
1.1-dichloroethane	10	(10							
1.2-dichloroethane	10	<10							
1.1-dichloroethylene	10	410		<u> </u>					
1.2-dichloropropane	10	C10							
1,3-Dichloropropylene	10	<10							
ethylbenzene	10	410							
methy! bromide	50	<10	<u> </u>						
methyl chloride	50	410							
methylene chloride	20	<10							
1.1.2.2-tetrachloroethane	10	<10			<u> </u>				
tetrachloroethylene	10	<10							
toluene	10	13.4							
1.2-trans-dichloroethylene	10	410							
1.1.1-trichloroethane	10	<10							

OUTPALL NO. 17 17 2	· · · · · · · · · · · · · · · · ·		EFF	LUENT	
OUTFALL NO.: DO 2			NTRATION		MASS (lbs/day)
POLLUTANT	MQL* (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum
1.1.2-trichloroethane	10	430			
trichloroethene (trichloroethylene)	10	<10			
vinył chloride (chloroethylene)	10_	<10	<u> </u>		
ACID EXTRACTABLE ORGANIC CHEMICAL	S - EPA Method	1 625 suggested			
2-chlorophenol	10	<10			
3-chlorophenol	10		-		
4-chlorophenol	10				
2.3-dichlorophenol	10		<u> </u>		
2.4-dichlorophenol	10	410	 		
2.5-dichlorophenol	10				
2,6-dichlorophenol	10	<u> </u>			
3.4-dichtorophenol	10				
2.4-dimethylphenol	10	<10		_	
2,4-dinitrophenol	50	<50			-
2-methyl 4.6-dinitrophenol (4,6-dinitro-o-cresol)	50	<50			
2-nitrophenol	20	410	<u> </u>		
4-nitrophenol	50	<50			
4-chloro-3-methylphenol (p-chloro-m-cresol)	10	<20			
pentachlorophenol	50	< <u>50</u>			
phenol	10	<10			
2.4.6-trichlorophenol	10	410			

		EFFLUENT							
OUTFALL NO.: 002			NTRATION		MASS (lbs/day)				
POLLUTANT	MQL* (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum				
BASE/NEUTRAL EXTRACTABLE ORGA	NIC CHEMICALS -	EPA Method 625	suggested						
acenaphthene	10	<10							
acenaphthylene	10	410							
anthracene	10	<10							
benzidine	50	410							
benzo(a)anthracene	10	410							
benzo(a)pyrene	10	410							
3.4-benzo fluoranthene	10	<10							
benzo(ghi)perylene	20	<10							
benzo(k)fluoranthene	10	410							
bis(2-chloroethoxy)methane	10	<10							
bis(2-chloroethyl)ether	10	410	ļ						
bis(2-chloroisopropyl)ether	10	<10							
bis(2-ethylhexyl)phthalate	10	0</td <td></td> <td></td> <td></td>							
4-bromophenyl phenyl ether	10	410							
butylbenzyl phthalate	10	<10							
2-chloronaphthalene	10	210							
4-chlorophenyl phenyl ether	10	<10							
chrysene	10	<10							
dibenzo(a.h)anthracene	20	410							
1.2-dichlorobenzene	10	<10							
1.3-dichlorobenzene	10	615							
1.4-dichlorobenzene	10	410							
3.3'-dichlorohenzidine	50	<90							
diethyl phthalate	10	410							

OUTFALL NO.: OOQ		EFFLUENT			
		CONCENTRATION (ppm)		MASS (lbs/day)	
POLLUTANT	MQL* (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum
dimethyl phthalate 10		410	· 		
di-n-butyl phthalate	10	210			
2.4-dinitrotoluene	10	<10			
2.6-dinitrotoluene	10	010			
di-n-octyl phthalate	10	410	\		
1.2-diphenylhydrazine (as azobenzene)	20	<20			
fluoranthene	10	<10			
fluorene	01	<10			
hexachlorobenzene	10	<10	ļ		
hexachlorobutadiene	10	410			
hexachlorocyclopentadiene	10	<10			
hexachloroethane		<10	<u> </u>	-	
indeno(1,2,3-cd)pyrene	20	410		-	
isophorone	10	410			
naphthaiene	10	<10			
nitrobenzene	10	<10			
N-nitrosodimethylamine	50	<u> </u>	 		
N-nitrosodi-n-propylamine	20	(10			
N-nitrosodiphenylamine	20	420		-	
phenanthrene	10	410		 	
pyrene	10	<10			
1.2,4-trichlorobenzene	10	<10			

OUTFALL NO.: OD A POLLUTANT MQL* (11g/1)		EFFLUENT				
		CONCENTRATION (ppm)		MASS (lbs/day)		
		Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	
PESTICIDES & PCB'S - EPA Method 608 re	quired					
aldrin	0.05	N/A				
Aroclor 1016 (PCB-1016)	1.0					
Aroclor 1221 (PCB-1221)	1.0					
Aroclor 1232 (PCB-1232)	1.0					
Aroclor 1242 (PCB-1242)	1.0			<u> </u>		
Aroclor 1248 (PCB-1248)	1.0		-			
Aroclor 1254 (PCB-1254)	1.0					
Aroclor 1260 (PCB-1260)	1.0					
alpha-BHC	0.05					
beta-BHC	0.05					
delta-BHC	0.05					
ganıma-BHC	0.05					
chlordane	0.2			ļ. -		
4.4'DDT	0.1		<u> </u>			
4.4'DDE	0.1					
4.4'DDD	0,1	 				
dieldrin	0,1					
alpha-endosulfan	0.1					
beta-endosulfan	0.1					
endosulfan sulfate	0.1					
endrin	0.1		ļ <u>.</u>	-		
endrin aldehyde	0.1					
heptachlor	0.05					
heptachlor epoxide	0.05					

OUTFALL NO.: 002		EFFLUENT			
		CONCENTRATION (ppm)		MASS (lbs/day)	
POLLUTANT	MQL* (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daity Maximum
toxaphene	5.0	N/A			
2.4-dichlorophenocyacetic acid (2.4-D)		<u> </u>			
2-(2.4.5-trichlorophenoxy) propionic acid					
2.3.7.8-tetrachlorodibenzo-p-dioxin - use EPA Method 1613	10 րրդ				

OUTFALL NO.: 5002		EFFLUENT CONCENTRATION (ppm)		MASS (lbs/day)	
POLLUTANT	MQL* (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum
METALS, CYANIDE, AND TOTAL PHENO	LS - use EPA Appro	oved Method	·-		
Antimony, Total	6()	<.004			
Arsenic, Total	10	0.01			
Beryllium, Total	5	< 0.01			
Cadmium. Total	1	6.003			
Chromium. Total	10	0.027			
Chromium, Hexavalent	10	0.07			
Copper. Total	10	0.008			
Lead, Total	5	< 0.01			
Mercury, Total	0.2	0.0007			
Nickel, Total [Marine]	5	N/A			
Nickel, Total [Freshwater]	40	0.04			
Selenium, Total	5	< 0.01			
Silver, Total	2	0.055			
Thallium, Total	10	< 0.01			
Zinc, Total	20	0.052			
Cyanide, Total	20	40.001			
Cyanide. I-ree		40.001			
Phenols. Total	5	0.014			

EFFLUENT_ OUTFALL NO.: 002 CONCENTRATION MASS (lbs/day) (ppm) POLLUTANT MQL^{\star} Daily Monthly Monthly Daily Maximum (ug/l) Average Average Maximum ADDITIONAL METALS, IF EXPECTED TO BE PRESENT - Use EPA Approved Method 40.01 Aluminum, Total Barium, Total < D.01 0.10 Boron, Total Cobalt, Total 40.001 2.39 Iron, Total 2.32 Iron. Dissolved 0.79 Magnesium, Total 0.04 Manganese, Total Molybdenum 40.01 Tin, Total < 0.01 <0.01 Titanium, Total

Minimum Quantification Level (MQL).

APPENDIX C

Pollutant	Maximum Concentration Observed ug/l
Copper	31
Zinc	13
Dichlorobromomethane	33
Chloroform	10

These pollutants are at very low concentrations which are far below accepted treatability levels.

Status of Regulations

BPT regulations (40 CFR 415.182) were promulgated on March 12, 1974. These regulations have since been remanded by the court.

BAT and NSPS regulations requiring zero discharge (40 CFR 415.183) were promulgated on March 12, 1974. These regulations have been since remanded by the court. However, it has been determined that the sodium metal subcategory be excluded from BAT and NSPS regulations because data from Section 308 letters and sampling surveys indicate that toxic pollutant concentrations are far below accepted treatable levels.

Because no significant quantities of toxic pollutants are present, no further effort will be given to development of pretreatment regulations for this subcategory.

Sodium Silicate

Summary of Determinations

It has been determined that no further effort be given to developing BPT, BAT, NSPS, and Pretreatment regulations for the Sodium Silicate Subcategory. The basis for this determination is that the small quantities of toxic pollutants found during screening are below accepted levels of treatability. This subcategory is excluded under Paragraph 8 of the Settlement Agreement.

Production Processes and Effluents

Sodium silicate is manufactured both in liquid and anhydrous powdered form. It has many industrial uses, such as additives in adhesives, flocculants, and cleaning agents. It is also used in the production of soap and household detergents. Sources of process wastewater include contact cooling water, filter backwash, gas scrubbers and tank cleaning.

The industry profile for this subcategory is given in Table 26.37-1.

Pollutants

It a has been received on about 63 percent of the industry as a result of Section 308 letters. In addition, a sampling survey was made at one plant which represents about 6 percent of the industry. The following pollutants were detected: nickel, copper, and zinc. These levels are below accepted treatability levels. In addition, the sampling data was taken from wastewaters receiving insufficient treatment. The wastes were ponded to remove suspended solids consisting essentially of sand and other silicates. Normally the pH of the wastes would be lowered to 9 and receive additional settling. However the dissolved silicate and high pH are considered beneficial by sewerage authorities in the removal of solids in primary and secondary settling systems.

Maximum concentrations of toxic pollutants found during sampling are:

Pollutant	(rg/1)
Copper	347
Nickel	121
Zinc	181

Status of Regulations

BPT, BAT, and NSPS regulations (40 CFR 415.192) requiring zero discharge of pollutants were promulgated on March 12, 1974. These regulations have since been remanded by the court and are not in effect.

Because no significant quantities of toxic pollutants are present, no further effort—will be given to development of pretreatment regulations for this subcategory.

Sodium Silicofluoride

Summary of Determinations

This subcategory has been excluded from the present study but will be included in the Phase II, Inorganic Chemicals, review.

Production Processes and Effluents

Sodium silicofluoride is used in the manufacture of sodium fluoride and in the light metal industry as a protective agent. It is also used as an insecticide, as a fluxing and opacity agent for ceramics and in detergent products.

The industry profile for this subcategory is given in Table 26.38-1.

SUBCRIEGORY

SODIUM SILLICATE

Total subcategory capacity rate (27 Plants)	927,300 kkg/year
Total subcategory production rate	NA.
Number of plants in this subcategory	39
308 Data on file for	21
With total capacity of	N/A
With total production of	431,000 ldkg/year
Representing capacity	47 percent
Representing production	N A
Plant production range:	
Miximum	12,400 kkg/year
Maccine	57,300 kkg/year
Average production	NA
Median production	NA
Average capacity utilization	NA.
Plant age range:	
Mirimon	7 years
Massimum	43 years
Waste water flow range:	
Minimum	NA
Maximum	NA
Volume per unit product:	
Minimum	NA
Maximum	NA .

Sources of data are Stanford Research Institute, Directory of Chemical Producers, U.S.A., 1979, U.S. Department of Commerce, Current Industrial Reports, December 1977; Energy and Environmental Analysis, Inc.: Draft Report, "Preliminary Economic Assessment of Effluent Limitations in the Inorganic Chemical Industry," June, 1978 and "Economic Analysis of Proposed Revised Effluent Guidelines and Standards for the Inorganic Chemicals Industry," March, 1980